End-to-End Kubernetes Cluster Deployment on AWS (EKS)
    
    Project Overview
    This project focuses on deploying a Kubernetes cluster on AWS using EKS with Terraform, Helm, Docker, Prometheus, and
      Grafana. The deployment will include microservices with auto-scaling, load balancing, monitoring, and security best practices.
    
    Tech Stack
    
        - Container Orchestration: Kubernetes (EKS)
- Infrastructure as Code (IaC): Terraform
- Containerization: Docker
- Package Management: Helm
- Monitoring & Logging: Prometheus, Grafana
- Load Balancing: AWS ALB (Application Load Balancer)
- Security: IAM Roles, RBAC
Project Architecture
    Components:
    
        - AWS EKS Cluster
            - Provisioned using Terraform.
- Configured with VPC, subnets, and security groups.
- Uses managed worker nodes for running workloads.
- Microservices Deployment
            - Containerized microservices using Docker.
- Deployed using Helm charts.
- Services communicate internally within the cluster.
- Auto Scaling and Load Balancing
            - Uses Kubernetes Horizontal Pod Autoscaler (HPA).
- External traffic is handled using an AWS ALB Ingress Controller.
- Monitoring with Prometheus & Grafana
            - Prometheus collects cluster metrics.
- Grafana visualizes metrics with custom dashboards.
- Security Implementation
            - IAM roles for secure AWS service access.
- RBAC policies for role-based access control.
Step-by-Step Implementation
    1. Provision AWS EKS Cluster Using Terraform
    
        - Create a VPC, subnets, internet gateway, and route tables.
- Deploy an EKS cluster with managed worker nodes.
- Configure IAM roles for EKS and worker nodes.
- Deploy AWS ALB Ingress Controller.
Terraform Files:
    
      - main.tf:Defines AWS resources.
- variables.tf:Stores configuration variables.
- eks.tf:Provisions the EKS cluster.
- alb.tf:Sets up the AWS ALB.
2. Build and Push Docker Images
    
      - Containerize microservices using Docker.
- Tag and push images to Amazon Elastic Container Registry (ECR).
    docker build -t myapp:v1 .
    docker tag myapp:v1 <AWS_ACCOUNT_ID>.dkr.ecr.<REGION>.amazonaws.com/myapp:v1
    docker push <AWS_ACCOUNT_ID>.dkr.ecr.<REGION>.amazonaws.com/myapp:v1
    
    
    
    
    3. Deploy Microservices with Helm
    
      - Create Helm charts for microservices.
- Define Kubernetes Deployment, Service, and Ingress in Helm templates.
- Install Helm charts to deploy applications.
    helm install myapp ./helm-chart/
    
    
    
    4. Configure Auto Scaling and Load Balancing
    
      - Implement Horizontal Pod Autoscaler (HPA).
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: myapp-hpa
spec:
  minReplicas: 2
  maxReplicas: 10
  metrics:
  - type: Resource
    resource:
      name: cpu
      targetAverageUtilization: 50
      Apply HPA:
      
    kubectl apply -f hpa.yaml
    
      Deploy AWS ALB Ingress Controller:
      helm upgrade --install aws-load-balancer-controller eks/aws-load-balancer-controller -n kube-system
    
    
    
    5. Set Up Monitoring with Prometheus and Grafana
    
      - Install Prometheus and Grafana using Helm:
    helm install prometheus prometheus-community/kube-prometheus-stack
    helm install grafana grafana/grafana
    
      Access Grafana dashboard:
      kubectl port-forward svc/grafana 3000:80 -n monitoring
    
    
    
    6. Secure Cluster with IAM and RBAC
    
      - Define IAM roles for accessing AWS services securely.
- Implement RBAC policies to restrict user permissions.
Example RBAC Policy:
    apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  namespace: default
  name: app-role
rules:
- apiGroups: [""]
  resources: ["pods"]
  verbs: ["get", "list"]
    Apply the policy:
    
    kubectl apply -f rbac.yaml
    
    
    Project Deliverables
    
        - Terraform files for provisioning EKS.
- Helm charts for deploying microservices.
- Docker images pushed to ECR.
- HPA configuration for auto-scaling.
- ALB Ingress Controller for traffic management.
- Prometheus & Grafana monitoring dashboards.
- RBAC policies and IAM roles for security.
Outcome
    This project ensures a scalable, secure, and fully monitored Kubernetes environment on AWS. 
      It follows best practices in automation, security, and observability to efficiently manage microservices in 
      production.
    
    Next Steps
    
        - Implement logging with Fluentd & Elasticsearch.
- Configure service mesh (Istio or Linkerd).
- Add CI/CD automation using Jenkins or GitHub Actions.
This project is ready for hands-on implementation! 🚀